(Schur Theorem) Suppose the set $M = \{1, 2, \ldots, n\}$ is partitioned into t disjoint subsets M_1, \ldots, M_t. Show that if $n \geq \lfloor t! \cdot e \rfloor$ then at least one class M_i contains three elements x_i, x_j, x_k with the property that $x_i - x_j = x_k$.

First Solution.

Fact 1. Using Taylor Series approximation for the function $f(x) = e^x$ at point 0 for $x = 1$, we obtain the well-known identity

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!} + \ldots,$$

hence

$$t! \cdot e = t! \left(1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{t!}\right) + \frac{1}{t+1} + \frac{1}{(t+1)(t+2)} + \ldots$$

(1)

Note that, for $t \geq 2$,

$$\frac{1}{t+1} + \frac{1}{(t+1)(t+2)} + \ldots < \frac{1}{t+1} + \frac{1}{(t+1)^2} + \frac{1}{(t+1)^3} + \ldots = -1 + \frac{1}{1 - \frac{1}{t+1}} = \frac{1}{t},$$

hence $S_t = \lfloor t! \cdot e \rfloor = t! \left(1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{t!}\right)$. It is easy to see that the sequence $(S_t)_{t \geq 0}$ satisfies the recurrence relation

$$S_t = tS_{t-1} + 1$$

(2)

for $t \geq 1$, defining $S_0 = 1$.

Now we can proceed with the solution of the problem.

Assume no subset of the partition contains three elements a, b, c so that $a + b = c$. From the recurrence relation we have $t \parallel S_t$, hence by Pigeonhole Principle, at least $\left\lfloor \frac{S_t}{t} \right\rfloor + 1 = S_{t-1} + 1$ elements of M are found in the same subset of the partition. Denote this subset by $M_1 = \{x_1, x_2, \ldots, x_{k}\}$ so that $x_1 < \ldots < x_k$, and $k \geq S_{t-1} + 1$. Consider the set $Y = \{y_1, \ldots, y_{k}\}$, defined by $y_i = x_{i+1} - x_i$. Clearly $|Y| = k - 1 \geq S_{t-1}$ and no element of Y is in M_1 (otherwise, if $y_i \in M_1$, then $y_i + x_1 = x_{i+1}$, contradiction). Consequently all elements of Y lie in the remaining $t - 1$ subsets. Using similar arguments, at least $\left\lfloor \frac{k - 1}{t - 1} \right\rfloor \geq \left\lfloor \frac{S_{t-1} - 1}{t - 1} \right\rfloor + 1 = S_{t-2} + 1$ elements of Y are found in the same subset from the partition of M. Without loss of generality, let M_2 be this subset. Then $M_2 = \{y_1, \ldots, y_s\} = \{x_2 - x_1, \ldots, x_{s+1} - x_1\}$, where $s \geq S_{t-2} + 1$. Because $y_i - y_1 = x_{i+1} - x_2$, we obtain $y_i - y_1 \notin M_1 \cup M_2$. Let $Z = \{y_2 - y_1, \ldots, y_s - y_1\} = \{x_3 - x_2, x_4 - x_2, \ldots, x_{s+1} - x_2\}$. Then the $|Z| \geq S_{t-2}$ elements of Z are in the remaining $t - 2$ subsets of the partition. By an easy induction, we get that the subset $M_i = \{x_i - x_{i-1}, x_{i+1} - x_{i-1}, \ldots\} = \{y_{i-1} - y_{i-2}, y_{i-2} - y_{i-3}, \ldots\}$ of the partition contains at least $S_{t-i} + 1$ elements, using at the induction step the observation that the difference of any two elements of the set M_i, $i > 1$, is the difference of some 2 elements of each of the sets M_1, \ldots, M_{t-1}. Moreover for each $j < i$ there is an $z \in M_j$ so that for each $c \in M_i$, there is a $d \in M_j$ so that $c = d - z$.

In the end, the set M_i will contain at least $S_0 + 1 = 2$ elements. Assume $M_i = \{a, b\}$ with $a < b$. Then the number $b - a$ must be in one of the subsets M_1, \ldots, M_{t-1}. Assume $b - a \in M_1$. In the end, the sets M_i will contain at least $S_0 + 1 = 2$ elements. Assume $M_i = \{a, b\}$ with $a < b$. Then the number $b - a$ must be in one of the subsets M_1, \ldots, M_{t-1}. Assume $b - a \in M_1$.
We use a theorem of Ramsey:

Let \(S \) be the Schur Number.

The Schur Number are known, namely \(S(1) = 1, S(2) = 4, S(3) = 13 \) and \(S(4) = 44 \). We have proved

\[
R(3,3) = 6.
\]

\[
R(3,3,\ldots,3) = \left\lfloor (t+1)! \cdot e \right\rfloor + 1
\]

The statement of Schur Theorem follows easily from Proposition 1. Indeed, let \(n = \left\lfloor t! \cdot e \right\rfloor \). Now assign to the vertices of a complete graph with \(n+1 \) vertices \(K_{n+1} \) the numbers \(1, 2, \ldots, n, n+1 \). Color each edge \((i,j)\) of \(K_{n+1} \) with the color \(c \), where \(|i-j| \in M_c \). By Proposition 1 \(R_t(3,3,\ldots,3) \leq \left\lfloor t! \cdot e \right\rfloor + 1 = n+1 \), hence \(K_{n+1} \) contains a monochromatic triangle. Let \(x < y < z \) be the vertices of this monochromatic triangle. Then \(y-x, z-x, \) and \(z-y \) belong to the same set \(M_i \), for some \(1 \leq i \leq t \). Since \((y-x)+(z-y) = (z-x) \) the proof of Schur’s Theorem is completed.

Remark 1 (Schur Number). The Schur Number \(S(t) \) is defined as the largest positive integer \(n \) so that there exists a partition in \(t \) subsets of the set \(\{1,2,\ldots,n\} \), no subsets containing three integers \(x, y, z \) so that \(x+y = z \) (\(x, y, z \) need not be different). As of now, only the first 4 exact values of the Schur Number are known, namely \(S(1) = 1, S(2) = 4, S(3) = 13 \) and \(S(4) = 44 \). We have proved
that \(S(t) \leq |t! \cdot e| - 1 \). This upper bound can be slightly improved to \(S(t) \leq \left\lfloor t! \left(e - \frac{1}{24} \right) \right\rfloor - 1 \).

From among the lower bounds, the following estimations are known: \(S(t) \geq 2^t - 1 \), \(S(t) \geq \frac{3^t - 1}{2} \) and \(S(t) \geq c \cdot 321^t \) for \(t > 5 \) and some constant \(c \).

References

6. A. Engel, Problem Solving Strategies, Chapter 4, The Box Principle.
13. L. Moser, An Introduction to the Theory of Numbers, Chapter 7, Combinatorial Number Theory

